Discovery of the fourth mobile sulfonamide resistance gene

نویسندگان

  • Mohammad Razavi
  • Nachiket P. Marathe
  • Michael R. Gillings
  • Carl-Fredrik Flach
  • Erik Kristiansson
  • D. G. Joakim Larsson
چکیده

BACKGROUND Over the past 75 years, human pathogens have acquired antibiotic resistance genes (ARGs), often from environmental bacteria. Integrons play a major role in the acquisition of antibiotic resistance genes. We therefore hypothesized that focused exploration of integron gene cassettes from microbial communities could be an efficient way to find novel mobile resistance genes. DNA from polluted Indian river sediments were amplified using three sets of primers targeting class 1 integrons and sequenced by long- and short-read technologies to maintain both accuracy and context. RESULTS Up to 89% of identified open reading frames encode known resistance genes, or variations thereof (> 1000). We identified putative novel ARGs to aminoglycosides, beta-lactams, trimethoprim, rifampicin, and chloramphenicol, including several novel OXA variants, providing reduced susceptibility to carbapenems. One dihydropteroate synthase gene, with less than 34% amino acid identity to the three known mobile sulfonamide resistance genes (sul1-3), provided complete resistance when expressed in Escherichia coli. The mobilized gene, here named sul4, is the first mobile sulfonamide resistance gene discovered since 2003. Analyses of adjacent DNA suggest that sul4 has been decontextualized from a set of chromosomal genes involved in folate synthesis in its original host, likely within the phylum Chloroflexi. The presence of an insertion sequence common region element could provide mobility to the entire integron. Screening of 6489 metagenomic datasets revealed that sul4 is already widespread in seven countries across Asia and Europe. CONCLUSIONS Our findings show that exploring integrons from environmental communities with a history of antibiotic exposure can provide an efficient way to find novel, mobile resistance genes. The mobilization of a fourth sulfonamide resistance gene is likely to provide expanded opportunities for sulfonamide resistance to spread, with potential impacts on both human and animal health.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis.

Polymerase chain reaction amplification and DNA sequencing of the Toxoplasma gondii dihydropteroate synthase gene (dhps) identified 4 alleles among parasite populations from 32 cases of human toxoplasmosis. Heterologous expression and enzyme assay reveal that 3 of these alleles encode sulfadiazine (Sdz)-sensitive enzymes. The fourth, generating a highly Sdz-resistant enzyme, differs from 1 of t...

متن کامل

Cluster Based Cross Layer Intelligent Service Discovery for Mobile Ad-Hoc Networks

The ability to discover services in Mobile Ad hoc Network (MANET) is a major prerequisite. Cluster basedcross layer intelligent service discovery for MANET (CBISD) is cluster based architecture, caching ofsemantic details of services and intelligent forwarding using network layer mechanisms. The cluster basedarchitecture using semantic knowledge provides scalability and accuracy. Also, the mini...

متن کامل

Expression of some stress-responsive genes in tomato plants treated with ABA and sulfonamide compounds. Leila Zeinali Yedegari1 and Nayer Mohammadkhani2*

Drought causes an increase in some gene expression in plant tissues such as plasma membrane intrinsic proteins type 1 (PIP1), 9-cis-epoxycarotenoid dioxygenase (NCED) SlAREB1. The effects of exogenous abscisic acid (ABA) and two sulfonamide compounds, namely, sulfacetamide (Sa) and sulfasalazine (SS) were studied on gene expression of tomato (Lycopersicon esculentum Mill. Cv. Super chief) under...

متن کامل

توزیع فراوانی ژن های Sul1, Sul2, Sul3, drf7 درمقاومت به کوتریموکسازول در باسیل‌های گرم منفی جدا شده از نمونه های بالینی بیماران بستری در بیمارستان پارس

Background and Aim: In the last few decades co-trimoxazole, an antibacterial combination of trimethoprim and sulfamethoxazole, has been used for treatment of bacterial infections, but due to the vast usage of these drugs, resistant strains have appeared throughout the world. One of the reasons for resistance to co-trimoxazole is related to drf genes, which are responsible for trimethoprim resis...

متن کامل

PCR and restriction endonuclease assay for detection of a novel mutation associated with sulfonamide resistance in Neisseria meningitidis.

We identified a previously undocumented mutation in the dihydropteroate synthase (folP) gene associated with Neisseria meningitidis sulfonamide resistance. A PCR-based assay to detect this mutation, which is 100% predictive of sulfonamide resistance, was developed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017